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We consider a two-stage mixed integer stochastic optimization problem and show that a static robust solution is a good
approximation to the fully adaptable two-stage solution for the stochastic problem under fairly general assumptions on the
uncertainty set and the probability distribution. In particular, we show that if the right-hand side of the constraints is uncertain
and belongs to a symmetric uncertainty set (such as hypercube, ellipsoid or norm ball) and the probability measure is also
symmetric, then the cost of the optimal fixed solution to the corresponding robust problem is at most twice the optimal
expected cost of the two-stage stochastic problem. Furthermore, we show that the bound is tight for symmetric uncertainty
sets and can be arbitrarily large if the uncertainty set is not symmetric. We refer to the ratio of the optimal cost of the robust
problem and the optimal cost of the two-stage stochastic problem as the stochasticity gap. We also extend the bound on the
stochasticity gap for another class of uncertainty sets referred to as positive.

If both the objective coefficients and right-hand side are uncertain, we show that the stochasticity gap can be arbitrarily
large even if the uncertainty set and the probability measure are both symmetric. However, we prove that the adaptability gap
(ratio of optimal cost of the robust problem and the optimal cost of a two-stage fully adaptable problem) is at most four even
if both the objective coefficients and the right-hand side of the constraints are uncertain and belong to a symmetric uncertainty
set. The bound holds for the class of positive uncertainty sets as well. Moreover, if the uncertainty set is a hypercube (special
case of a symmetric set), the adaptability gap is one under an even more general model of uncertainty where the constraint
coefficients are also uncertain.
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1. Introduction. In most real-world problems, several parameters are uncertain at the optimization phase and
a solution obtained through a deterministic optimization approach might be sensitive to even slight perturbations
in the problem parameters, possibly rendering it highly suboptimal or infeasible. Stochastic optimization that
was introduced as early as Dantzig [10] has been extensively studied in the literature to address uncertainty.
A stochastic optimization approach assumes a probability distribution over the uncertain parameters and tries to
compute a (two-stage or a multistage) solution that optimizes the expected value of the objective function. We
refer the reader to several textbooks including Infanger [15], Kall and Wallace [16], Prékopa [17], Birge and
Louveaux [9], Shapiro [20], Shapiro et al. [22] and the references therein for a comprehensive view of stochastic
optimization. Whereas a stochastic optimization approach addresses the issue of uncertain parameters, it is by and
large computationally intractable. Shapiro and Nemirovski [21] give hardness results for two-stage and multistage
stochastic optimization problems where they show that multistage stochastic optimization is computationally
intractable even if approximate solutions are desired. Furthermore, to solve a two-stage stochastic optimization
problem, Shapiro and Nemirovski [21] present an approximate sampling based algorithm where a sufficiently
large number of scenarios (depending on the variance of the objective function and the desired accuracy level)
are sampled from the assumed distribution and the solution to the resulting sampled problem is argued to provide
an approximate solution to the original problem.
More recently, a robust optimization approach has been introduced to address the problem of optimization

under uncertainty and has been studied extensively (see Ben-Tal and Nemirovski [3], Bertsimas and Sim [5, 6]).
In a robust optimization approach, the uncertain parameters are assumed to belong to some uncertainty set and
the goal is to construct a solution such that the objective value in the worst-case realization of the parameters in
the uncertainty set is minimized. A robust optimization approach constructs a single solution that is feasible for
all possible realizations of the parameters in the assumed uncertainty set. Therefore, it is a significantly more
tractable approach computationally as compared to a stochastic optimization approach. However, it is possible
that because a robust optimization approach tries to optimize over the worst-case scenario, it may produce
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conservative solutions. We point the reader to the survey by Bertsimas et al. [7] and the references therein for
an extensive review of the literature in robust optimization.
To address this drawback of robust optimization, an adaptive optimization approach has been considered

where the recourse solution can be adjusted according to the realization of the uncertain parameters where
the objective is to minimize the worst-case cost. However, the adaptive problem is intractable in general and
approximate adaptive optimization approaches have been considered in the literature where simpler functional
forms (such as an affine policy or linear decision rules) are considered to approximate the optimal decisions. The
functional form allows to succinctly represent the solution in each stage for every realization of the uncertain
parameters, albeit the loss in optimality. This approach was first considered in Rockafellar and Wets [19] in
the context of stochastic optimization, and then in robust optimization (Ben-Tal et al. [2]), and extended to
linear systems theory (Ben-Tal et al. [1]). In a recent paper, Bertsimas et al. [8] consider a one-dimensional,
box-constrained multistage robust optimization problem and show that an affine policy is optimal in this setting.
However, in general an affine policy does not necessarily provide a good approximation to the adaptive problem
(Bertsimas and Goyal [4]). Moreover, the computation complexity of solving an adaptive optimization problem
is significantly higher.
In this paper, we show that under a fairly general model of uncertainty for a two-stage mixed integer optimiza-

tion problem, a robust optimization approach is a good approximation to solving the corresponding stochastic
optimization problem optimally. In other words, the worst-case cost of an optimal solution to the robust two-
stage mixed integer optimization problem is not much worse than the expected cost of an optimal solution
to the corresponding two-stage stochastic optimization problem when the right-hand side of the constraints is
uncertain and belongs to a symmetric uncertainty set and the probability distribution is also symmetric (we also
extend our result under milder conditions). Furthermore, a robust optimization problem can be solved efficiently
(as compared to stochastic and adaptive) and thus, provides a computationally tractable approach to obtain good
approximations to the two-stage stochastic problem. We also show that a robust optimization approach is an
arbitrarily bad approximation to the two-stage stochastic optimization problem when both costs and right-hand
sides are uncertain. However, we show that an optimal solution to the robust problem is a good approximation
for a two-stage adaptive optimization problem where the goal is to construct a fully-adaptable solution that
minimizes the worst-case cost, even when both costs and right-hand sides are uncertain under fairly general
assumptions on the uncertainty set.

1.1. Models. We consider the following two-stage stochastic mixed integer optimization problem �Stoch�b�:

zStoch�b�= min
x� y�	�∀	∈


cT x+ Ɛ
�d
T y�	��

Ax+By�	�≥ b�	�� ∀	 ∈
�

x ∈�n1−p1+ ×�p1+ �

y�	� ∈�n2−p2+ ×�p2+ �

(1)

where A ∈ �m×n1 , B ∈ �m×n2 , c ∈ �n1+ , d ∈ �n2+ , 
 denotes the set of scenarios and for any 	 ∈
, b�	� ∈ �m
+

denotes the realization of the uncertain values of right-hand side of the constraints b, and y�	� denotes the
second-stage decision in scenario 	. Let

�b�
�= �b�	� �	 ∈
�⊂�m
+

be the set of possible values of the uncertain parameters (or the uncertainty set), and 
 is a probability measure
over the set of scenarios 
. Also, Ɛ
� · � is the expectation with respect to the probability measure 
.
The corresponding two-stage robust optimization problem, �Rob�b� is as follows:

zRob�b�=min
x� y

cT x+dT y

Ax+By ≥ b�	�� ∀	 ∈
�

x ∈�n1−p1+ ×�p1+ �

y ∈�n2−p2+ ×�p2+ �

(2)
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Also, the two-stage adaptive optimization problem, �Adapt�b� is formulated as follows:

zAdapt�b�= min
x� y�	��∀	∈


cT x+max
	∈


�dT y�	��

Ax+By�	�≥ b�	�� ∀	 ∈
�

x ∈�n1−p1+ ×�p1+ �

y�	� ∈�n2−p2+ ×�p2+ �

(3)

We would like to note that the problem �Adapt�b� is intractable even when there are no integer decision variables.
In fact, Feige et al. [12] show that it is hard to approximate �Adapt�b� within a factor better than O�logm�
even when there are no integer decision variables, i.e., p1 = p2 = 0, unless NP⊂TIME�2O�

√
n��, where n is the

input size of the problem. Note that we parameterize the problem names with the parameter b that denotes that
the right-hand side of the constraints are uncertain. We also extend our uncertainty to include cost uncertainty
parametrized as �b�d�. The two-stage stochastic optimization problem, �Stoch�b�d� under the new model of
uncertainty is as follows:

zStoch�b�d�= min
x� y�	��∀	∈


cT x+ Ɛ
�d�	�
T y�	��

Ax+By�	�≥ b�	�� ∀	 ∈
�

x ∈�n1−p1+ ×�p1+ �

y�	� ∈�n2−p2+ ×�n2+ �

(4)

where A ∈�m×n1 , B ∈�m×n2 , c ∈�n1+ , 
 denotes the set of scenarios, where

��b�d��
�= ��b�	��d�	�� �	 ∈
�⊂�m+n2+

is the uncertainty set and for any 	 ∈
, b�	� ∈�m
+ and d�	� ∈�n2+ are realizations of the uncertain values of

right-hand side b, and the second-stage cost vector d, in scenario 	, and 
 is a probability measure over the set
of scenarios 
.
The corresponding two-stage robust optimization problem, �Rob�b�d� is as follows:

zRob�b�d�=min
x� y

cT x+max
	∈


�d�	�T y�

Ax+By ≥ b�	�� ∀	 ∈
�

x ∈�n1−p1+ ×�p1+ �

y ∈�n2−p2+ ×�n2+ �

(5)

and the two-stage adaptive optimization problem, �Adapt�b�d� is formulated as follows:

zAdapt�b�d�= min
x� y�	��∀	∈


cT x+max
	∈


�d�	�T y�	��

Ax+By�	�≥ b�	�� ∀	 ∈
�

x ∈�n1−p1+ ×�p1+ �

y�	� ∈�n2−p2+ ×�n2+ �

(6)

The models for the stochastic and the adaptive problems described above, include set covering formulations
considered in the recent work on approximation algorithms for two-stage stochastic and robust combinatorial
problems such as set cover, facility location and Steiner trees (Immorlica et al. [14], Ravi and Sinha [18], Shmoys
and Swamy [23], Gupta et al. [13], Dhamdhere et al. [11]). For instance, by setting A and B to be the element
set incidence matrix, we obtain a two-stage set covering problem. We refer the reader to a survey by Swamy and
Shmoys [24] on the recent results in approximation algorithms for stochastic combinatorial problems. Our model
is more general than the set covering model, as there are no restrictions on the coefficients of the constraint
matrices. For instance, we can also model constraints of the form y�	� ≤ � · x that arise in network design
problems. This can be done by setting A = � · I , B = −I , and b = 0, where I refers to an identity matrix of
an appropriate dimension. Note that our model does not admit a complete recourse, unlike the set covering
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models considered in the above-mentioned references. Therefore, the sampling-based approaches proposed in
Shmoys and Swamy [23] and Gupta et al. [13] do not work for our problem. Although the above models are
quite general, we would like to note that the assumed nonnegativity of the right-hand side of the constraints
prevents us from modeling packing constraints such as

∑n1
j=1 xj ≤ 1. Moreover, the assumed nonnegativity of the

objective coefficients does not allow us to model maximization problems.
Let us also introduce the following definitions before formally describing our contributions.
Definition 1.1. A set H ⊂�n is a hypercube, if there exist li ≤ ui for all i= 1� ! ! ! � n, such that,

H = �x ∈�n � li ≤ xi ≤ ui� ∀ i= 1� ! ! ! � n��

Definition 1.2. A set P ⊂�n is symmetric, if there exists some u0 ∈ P , such that, for any z ∈�n,

�u0 + z� ∈ P ⇔ �u0 − z� ∈ P� (7)

Note that (7) is equivalent to x ∈ P ⇔ �2u0 − x� ∈ P . A hypercube is a special case of a symmetric set. An
ellipsoid, ��u�D�, where u ∈�n and D ∈�n×n is a positive semidefinite matrix, and

��u�D�= �u+D1/2v � u� v ∈�n� vT v≤ 1�

is also an example of a symmetric set that is a commonly used uncertainty set. Another commonly used
uncertainty set that is symmetric is a norm ball B�x0� r� where x0 ∈�n and r ∈�+, and

B�x0� r�= �x ∈�n � �x− x0� ≤ r��

where � · � denotes some norm (for instance, the euclidean norm). Because most commonly used uncertainty
sets are symmetric, our assumption of symmetry on the uncertainty set is not very restrictive. Nevertheless, there
are natural uncertainty sets that do not satisfy the assumption of symmetry, such as the following fractional
knapsack polytope:

P =
{
x ∈ �0�1�n

∣∣∣∣
n∑

j=1
xj ≤ k

}
� (8)

We show that P is not symmetric even for n= 2 and k= 1 (see Lemma 2.4). However, P is a natural uncertainty
set that occurs in many settings (for instance, in modeling k-fault tolerance). Therefore, it would be useful to
prove a bound for such uncertainty sets as well. This motivates us to define the following class of convex sets.
Definition 1.3. A convex set P ⊂ �n

+ is positive if there exists a convex symmetric set S ⊂ �n
+ such that

P ⊂ S and the point of symmetry of S is contained in P .
For example, the convex set P in (8) is positive for k≥ n/2. It is contained in a unit hypercube (a symmetric

set in the nonnegative orthant) and the point of symmetry of the unit hypercube 1
2 · e (where e is the vector

of all ones) belongs to P when k ≥ n/2 (see Figure 1). More generally, any polytope in the unit hypercube
that contains 1

2 · e is positive. Another example is the fractional node cover polytope Q of an undirected graph
G= �V �E�, where �V � = n, and

Q= �x ∈ �0�1�n � xi + xj ≥ 1� ∀ �i� j� ∈E��

Furthermore, any convex set in the nonnegative orthant that is sufficiently away from the origin is positive.
In fact, we can show that all two-dimensional convex sets in the nonnegative orthant are positive. Therefore,
our bounds apply to all two-dimensional convex uncertainty sets. Let us also define a symmetric probability
measure on a symmetric set.

P P

(1, ...,1)
H

(1/2, ...,1/2)

(a) (b)

Figure 1. (a) P = �x ∈�n
+ � x1 +· · ·+ xn ≤ n/2� is not symmetric. (b) However, P is positive as the unit hypercube H = �0�1�n contains

P and its point of symmetry, �1/2� ! ! ! �1/2� belongs to P .
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Definition 1.4. A probability measure 
 on a symmetric set P ⊂ �n, where u0 is the point of symmetry
of P , is symmetric, if for any S ⊂ P , 
�S�=
�Ŝ�, where Ŝ = ��2u0 − x� � x ∈ S�.
As an example, the uniform probability measure over any symmetric set P ⊂�n is symmetric.

1.2. Our contributions. In this paper, we compare the optimal cost of the robust problem�Rob�b� to the opti-
mal costs of problems �Stoch�b� and �Adapt�b�. We refer to the ratio of zRob�b� and zStoch�b� (as well as the ratio
of zRob�b�d� and zStoch�b�d�) as the stochasticity gap, and the ratio of zRob�b� and zAdapt�b� (as well as the ratio
of zRob�b�d� and zAdapt�b�d�) as the adaptability gap. Recall that zRob�b�, zStoch�b�, and zAdapt�b� are the opti-
mal costs of �Rob�b�, �Stoch�b�, and �Adapt�b�, respectively, and zRob�b�d�, zStoch�b�d�, and zAdapt�b�d� are the
optimal costs of �Rob�b�d�, �Stoch�b�d�, and �Adapt�b�d�, respectively.

1.2.1. Stochasticity gap. We show that the stochasticity gap is at most two if the uncertainty set is symmetric
(see Definition 1.2) as well as the probability distribution over the uncertainty set is symmetric (we further extend
to other milder conditions on the probability distribution) and there are no integer decision variables in the
second stage, i.e., p2 = 0 in �Stoch�b�. This implies that the cost of an optimal fixed solution x∗ ∈�n1−p1+ ×�p1+ ,
y∗ ∈�n2+ for �Rob�b� is at most twice the expected cost of an optimal two-stage solution to �Stoch�b�, and thus
the solution x∗, y�	� = y∗ for all scenarios 	 ∈
 is a good approximate solution for the problem �Stoch�b�.
Moreover, if we use the solution x∗ as the first stage solution for �Stoch�b� and an optimal second-stage solution
y�b�, given the first stage solution is x∗, then we can show that the expected cost is at most the cost of the static
solution (and in many cases strictly better). For all 	 ∈
, let

f �x∗�	�=min�dT y � By ≥ b�	�−Ax∗� y ≥ 0��

Because y∗ is a feasible second stage solution for all 	 ∈
 given that the first stage solution is x∗, f �x∗�	�≤
dT y∗. Let fStoch�x∗� be the optimal expected cost when the first stage solution is x∗. Therefore,

fStoch�x
∗�= cT x∗ + Ɛ
�f �x

∗�	��≤ cT x∗ +dT y∗ = zRob�b�≤ 2 · zStoch�b��
where the second inequality follows as f �x∗�	�≤ dT y∗ for all 	 ∈
.
Furthermore, an optimal solution to �Rob�b� can be computed by solving a single mixed integer optimization

problem and does not even require any knowledge of the probability distribution 
, although the solution is a
good approximation to the stochastic problem only if 
 is symmetric. This provides a good computationally
tractable approximation to the stochastic optimization problem that is intractable in general. Our results hold
under the assumptions of symmetry and nonnegativity on the uncertainty set. Note that most commonly used
uncertainty sets, such as hypercubes (specifying an interval of values for each uncertain parameter), ellipsoids
and norm balls satisfy these assumptions. The bound on the stochasticity gap holds if the uncertainty set is
convex and positive and the probability distribution satisfies a technical condition similar to symmetry. Therefore,
we show a surprising approximate equivalence between two-stage robust optimization and two-stage stochastic
optimization. The bound on the stochasticity gap is tight for symmetric uncertainty sets and it can be arbitrarily
large if the uncertainty set is not symmetric. Therefore, our results give a nice characterization of when a
robust solution is a bounded approximation to the stochastic optimization problem with only the right-hand
side uncertainty and no integer second-stage decision variables. However, for the model with both cost and
right-hand side uncertainty (problems �Stoch�b�d� and �Rob�b�d�), we show that the stochasticity gap (i.e., the
ratio of zRob�b�d� and zStoch�b�d�) can be arbitrarily large even when there are no second-stage integer decision
variables and the uncertainty set as well as the probability distribution are symmetric. In fact, the stochasticity
gap is large when only the objective coefficients are uncertain and the right-hand side is deterministic.

1.2.2. Adaptability gap. We show that the adaptability gap �zRob�b�/zAdapt�b�� is at most two if the uncer-
tainty �b�
� is symmetric. The bound of two on the adaptability gap holds even if some of the second-stage
decision variables are integers in problems �Adapt�b� and correspondingly �Rob�b� unlike the bound on the
stochasticity gap which holds only if all the second-stage decision variables are continuous. In fact, the adaptabil-
ity gap is bounded for problems �Rob�b�d� and �Adapt�b�d�, where the formulation also models cost uncertainty
along with the right-hand side uncertainty unlike the stochasticity gap. Our main results on the adaptability gap
are the following:

(i) If the uncertainty set ��b�d��
� is a hypercube (which is a special case of a symmetric uncertainty
set), then the adaptability gap is one, i.e., zRob�b�d�= zAdapt�b�d�. This implies, that there is a single solution
�x� y�� x ∈ �n1−p1+ × �p1+ , y ∈ �n2−p2+ × �n2+ that is feasible for all scenarios 	 ∈ 
 and the worst-case cost of
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Table 1. Stochasticity gap and adaptability gap for different uncertainty sets for the model
with uncertain right-hand sides.

Uncertainty set Stochasticity gap Adaptability gap
�b�
� �zRob�b�/�zStoch�b��, p2 = 0� �zRob�b�/�zAdapt�b���

Hypercube 2∗ 1∗

Symmetric 2∗ 2∗

Convex, positive 2 2
Convex 
�m� 
�m�

Notes. We assume �b�
� lies in the nonnegative orthant, objective coefficients c�d≥ 0 and
x� y�	�≥ 0. Asterisk denotes that the bound is tight.

this solution is exactly equal to the optimal fully-adaptable solution. In fact, we prove this result for an even
more general model of uncertainty where we also allow the constraint coefficients to be uncertain. We would
like to note that unlike the adaptability gap, the stochasticity gap is two even if the uncertainty set �b�
� is a
hypercube and the bound is tight in this case as well.

(ii) For any symmetric uncertainty set ��b�d��
�, we show that zRob�b�d�≤ 4 · zAdapt�b�d�.
(iii) We also extend the bound on the adaptability gap for positive uncertainty sets, i.e., zRob�b�d� ≤ 4 ·

zAdapt�b�d� if ��b�d��
� is positive and convex. The bound on the adaptability gap for the case of positive
uncertainty sets formalizes the following intuition: the relative change in the optimal cost of a two-stage problem
with linear cost function depends on the relative change in the problem parameters and not on the absolute
change. If the uncertainty set is positive, all the uncertain parameters are sufficiently far from zero and thus, the
relative change in their values can be bounded, a fact that allows us to bound the adaptability gap.
(iv) For a general convex uncertainty set (neither symmetric nor positive), we show that the adaptability

gap can be arbitrarily large. In particular, we construct a convex uncertainty set that is neither symmetric nor
positive and zRob�b�d�≥m · zAdapt�b�d�. This shows that our results give an almost tight characterization of the
uncertainty sets where the adaptability gap is bounded.
Our results on the stochasticity gap and the adaptability gap for the model where only the right-hand side is

uncertain are summarized in Table 1.
Table 2 summarizes our results when both right-hand side and objective coefficients are uncertain.

1.2.3. Outline. In §2, we present the bound on the stochasticity gap under symmetric uncertainty sets when
only the right-hand side is uncertain. We present examples that show that the bound is tight for this case and
also that the bound can be arbitrarily large for general nonsymmetric uncertainty sets in §§2.2 and 2.3. In §2.4,
we prove the bound on the stochasticity gap for positive sets. In §3, we show that the stochasticity gap can be
arbitrarily large when the objective coefficients are uncertain even when the uncertainty set and the probability
distribution are both symmetric and there are no integer decision variables.
In §4, we present our results on the adaptability gap under positive uncertainty sets in the model where only

the right-hand side is uncertain. We also present a tight example that shows that the bound on the adaptability
gap is tight for a symmetric uncertainty set when only the right-hand side of the constraints is uncertain and an
example that shows that the adaptability gap can be arbitrarily large if the uncertainty set is not symmetric. In §5,
we prove the bound on the adaptability gap for the model where both cost and right-hand side are uncertain.
The special case of hypercube uncertainty is presented in §5.2, where we show that the adaptability gap is one
when the uncertainty set is a hypercube even for a more general model where even the constraint coefficients
are allowed to be uncertain.

Table 2. Stochasticity and adaptability gap for the model with both right-hand side and
costs uncertain.

Uncertainty set Stochasticity gap Adaptability gap
��b�d��
� �zRob�b�d�/�zStoch�b�d��� �zRob�b�d�/�zAdapt�b�d���

Hypercube 
�n2� 1∗

Symmetric 
�n2� 4
Convex, positive 
�n2� 4
Convex 
�max�m�n2�� 
�m�

Note. Asterisk denotes that the bound is tight.
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2. Stochasticity gap under right-hand side uncertainty. In this section, we consider the robust and
stochastic problems �Rob�b� (cf. (2)) and �Stoch�b� (cf. (1)), where the right-hand side of the constraints is
uncertain. We show that the worst-case cost of the optimal solution of �Rob�b� is at most two times the expected
cost of an optimal solution of �Stoch�b� if the uncertainty set is symmetric. We also show that the bound is
tight for symmetric uncertainty sets and the stochasticity gap can be arbitrarily large if the uncertainty set is not
symmetric. We further extend the bound on the stochasticity gap for the case of positive uncertainty sets.

2.1. Symmetric uncertainty sets. In this section, we prove that under fairly general conditions, the stochas-
ticity gap zRob�b�/zStoch�b� for the two-stage stochastic problem �Stoch�b� and robust problem �Rob�b�, is at most
two for symmetric uncertainty sets. In particular, we prove the following main theorem.

Theorem 2.1. Let zStoch�b� be the optimal expected cost of �Stoch�b�, and zRob�b� be the optimal worst-case
cost of the corresponding problem �Rob�b�, where there are no integer decision variables in the second stage,
i.e., p2 = 0 and the uncertainty set, �b�
� is symmetric. Let 	0 denote the scenario such that b�	0� is the point
of symmetry of �b�
� and the probability measure 
 on the set of scenarios 
 satisfies that

Ɛ
�b�	��≥ b�	0�� (9)

Then
zRob�b�≤ 2 · zStoch�b��

Recall that Ɛ
� · � denotes the expectation with respect to 
, which is a probability measure on the set of
scenarios 
. Because the uncertainty set �b�
� is assumed to be symmetric, there exists a point of symmetry,
b0 ∈ �b�
�. The scenario where the realization of the uncertain right-hand side is b0 is referred to as 	0,
and b�	0�= b0. We require that the expected value of the uncertain right-hand side vector with respect to the
probability measure 
 is at least b�	0�, i.e.,

Ɛ
�bj�	��≥ bj�	
0�� j = 1� ! ! ! �m�

For instance, consider the following hypercube uncertainty set:

�b�
�= �b ∈�m
+ � 0≤ bj ≤ 1� j = 1� ! ! ! �m�

and each component bj , j = 1� ! ! ! �m takes value uniformly at random between zero and one independent of
other components. The point of symmetry of the uncertainty set is b0j = 1/2 for all j = 1� ! ! ! �m and it is easy to
verify that Ɛ
�b�	��= b0. In fact, (9) is satisfied for any symmetric probability measure 
 (see Definition 1.4)
on a symmetric uncertainty set as we show in the following lemma.

Lemma 2.1. Let 
 be a symmetric probability measure on the symmetric set S ⊂ �n, where u0 ∈ �n is the
point of symmetry of S. Let x be a random vector drawn from S with respect to the measure 
. Then

Ɛ
�x�= u0�

Proof. We can write the expectation as follows:

Ɛ
�x� =
∫
x∈S

x d


=
∫
�2u0−y�∈S

�2u0 − y�d
 (10)

=
∫
y∈S

�2u0 − y�d
 (11)

=
∫
y∈S

2u0 d
−
∫
y∈S

y d


= 2u0 −
∫
y∈S

y d


= 2u0 − Ɛ
�x�� (12)

where (10) follows from a change of variables, setting y = 2u0 − x. Equation (11) follows from the symmetry
of S and 
. From (12), we have that Ɛ
�x�= u0. �
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For a symmetric uncertainty set, the symmetry of the probability measure is natural in most practical settings
and thus, (9) which is a weaker condition than the symmetry of 
, is not a restrictive assumption. We also
generalize the bound on the stochasticity gap to the case where the probability measure does not satisfy (9) but
satisfies a weaker assumption (see Theorem 2.2).
Before proving Theorem 2.1, we show an interesting geometric property for symmetric sets. Consider any

symmetric set S ⊂�n. For each j = 1� ! ! ! � n, let

xhj = max
x∈S

xj� (13)

x0j = min
x∈S

xj � (14)

Consider the following hypercube H :

H = �x ∈�n � x0j ≤ xj ≤ xhj � j = 1� ! ! ! � n�� (15)

Lemma 2.2. For any hypercube H ′ ⊂�n,

S ⊂H ′ ⇒ H ⊂H ′�

Therefore, H is the smallest hypercube such that S ⊂H .

Proof. Let H ′ = �x ∈�n � pj ≤ xj ≤ qj� such that S ⊂H ′. Consider x ∈H . Suppose x �H ′. Therefore, there
exists j ∈ �1�2� ! ! ! � n� such that

xj > qj or xj < pj�

We know that x0j ≤ xj ≤ xhj . Suppose xj > qj (the other case is similar). Therefore, qj < xhj . Consider

4 ∈ argmax�xj � x ∈ S��

We know that 4j = xhj > qj . Thus, 4�H ′, which is a contradiction. �

Lemma 2.3. Let x0 denote the center of hypercube H defined in (15), i.e., for all j = 1� ! ! ! � n,

x0j =
x0j + xhj

2
�

Then x0 is the point of symmetry of S. Furthermore, x≤ 2 · x0 for all x ∈ S.

Proof. Suppose the point of symmetry of S is u0 ∈ S. Therefore, �u0−z� ∈ S⇒ �u0+z� ∈ S for any z ∈�n.
We prove that u0 = x0. For all j = 1� ! ! ! � n, let

5j ∈ argmin�xj � x ∈ S��

4j ∈ argmax�xj � x ∈ S��
(16)

Note that 5j
j = x0j and 4

j
j = xhj (cf. (13)–(14), see Figure 2). For any j ∈ �1� ! ! ! �m�, 4j = u0 + zj for some

zj ∈�n. Therefore, u0 − zj ∈ S, and

x0j ≤ u0j − z
j
j = 2u0j − �u0j + z

j
j�= 2u0j −4

j
j = 2u0j − xhj ⇒ x0j + xhj

2
≤ u0j �

Also, 5j = u0 − yj for some yj ∈�m, which implies �u0 + yj� ∈ S, and

xhj ≥ u0j + y
j
j = 2u0j − �u0j − y

j
j �= 2u0j −5

j
j = 2u0j − x0j ⇒ x0j + xhj

2
≥ u0j �

Therefore,
x0j + xhj

2
= u0j = x0j � ∀ j = 1� ! ! ! � n�

which implies that x0 is the point of symmetry of S. Consider any x ∈ S. For all j = 1� ! ! ! � n,

xj ≤ xhj ≤ �xhj + x0j �≤ 2 · x0j �
where the second last inequality follows from the fact that x0j ≥ 0 as S ⊂ �n

+. Therefore, x ≤ 2x0 for all
x ∈ S. �
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x2

x1

xh

x l

u0

�1

�2

�2

�1

S
H

xh2 = �2
2

x l2 = �2
2

x l1 = �1
1 xh1 = �1

1

Figure 2. A symmetric set S with point of symmetry u0, and the bounding hypercube H .
Note. x0 and xh are as defined in (13) and (14) and 51�52�4142 as defined in (16).

Proof of Theorem 2.1. Consider an optimal solution x∗ ∈ �n1−p1 × �p1+ , y∗�	� ∈ �n2+ for all 	 ∈ 
 for
�Stoch�b�. Therefore,

A�2x∗�+B�2y∗�	0�� = 2�Ax∗ +By∗�	0��

≥ 2b�	0� (17)

≥ b�	�� ∀	 ∈
� (18)

where (17) follows from the fact that �x∗� y∗�	0�� is a feasible solution for scenario 	0. Inequality (18) follows
as b�	0� is the point of symmetry of �b�
� and b�	�≤ 2b�	0� for all b�	� ∈�b�
� from Lemma 2.3. Thus,
�2x∗�2y∗�	0�� is a feasible solution for �Rob�b�, and

zRob�b�≤ cT �2x∗�+dT �2y∗�	0��= 2 · �cT x∗ +dT y∗�	0��� (19)

We know that
Ax∗ +By∗�	�≥ b�	�� ∀	 ∈
�

If we take the expectation of the above inequality with respect to the probability measure 
, we have

Ɛ
�Ax
∗ +By∗�	��≥ Ɛ
�b�	��≥ b�	0��

Therefore, by the linearity of expectation,

Ɛ
�Ax
∗�+ Ɛ
�By

∗�	��=Ax∗ +BƐ
�y
∗�	��≥ b�	0��

Therefore, Ɛ
�y
∗�	�� is a feasible solution for scenario 	0, because there are no integer decision variables in

the second stage (p2 = 0). Thus,
dT y∗�	0�≤ dT Ɛ
�y

∗�	��� (20)

because y∗�	0� is an optimal solution for scenario 	0. Also,

zStoch�b� = cT x∗ + Ɛ
�d
T y∗�	��

= cT x∗ +dT Ɛ
�y
∗�	�� (21)

≥ cT x∗ +dT y∗�	0� (22)

≥ zRob�b�

2
� (23)

where (21) follows from the linearity of expectation and (22) follows from (20). Inequality (23) follows
from (19). �
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Note that although the stochasticity gap is bounded when there are some integer decision variables in the
first stage, our bound does not hold in general if there are binary decision variables in the model instead of
integer decision variables because we construct a feasible solution to �Rob�b� by scaling the feasible solution for
scenario 	0 by a factor of two. We require the symmetry of the uncertainty set in proving that the scaled solution
�2x∗�2y∗�	0�� corresponding to the scenario 	0, is feasible for �Rob�b� and the condition on the probability
measure 
 is required to prove that the cost of the fixed solution �2x∗�2y∗�	0�� is not much worse than the
optimal expected cost of �Stoch�b�. As noted earlier, the assumptions on the uncertainty set and the probability
measure are not very restrictive and hold in many natural settings. Furthermore, the bound on the stochasticity
gap generalizes even if the Condition (9) on the probability measure does not hold, although the bound might
be worse. In particular, we prove the following theorem that is a generalization of Theorem 2.1.

Theorem 2.2. Consider the problems �Stoch�b� and �Rob�b� such that there are no integer decision variables
in the second stage, i.e., p2 = 0 and the uncertainty set �b�
�, is symmetric. Let 	0 denote the scenario such
that b�	0� is the point of symmetry of �b�
� and suppose for some 6> 0, 6 ·b�	0� ∈�b�
� and the probability
measure 
 on the set of scenarios 
 satisfies that

Ɛ
�b�	��≥ 6 · b�	0�� (24)

Then

zRob�b�≤
⌈
2
6

⌉
· zStoch�b��

Proof. Let 	̃ denote the scenario such that b�	̃�= 6 · b�	0�. Consider an optimal solution x∗ ∈ �n1−p1 ×
�p1+ � y∗�	� ∈ �n2+ for all 	 ∈
 for �Stoch�b�. We first show that the solution �2/6� · �x∗� y∗�	̃�� is a feasible
solution for �Rob�b�: ⌈

2
6

⌉
· �Ax∗ +By∗�	̃�� ≥ 2

6
· �Ax∗ +By∗�	̃��

≥ 2
6
· b�	̃� (25)

= 2
6
· 6 · b�	0� (26)

= 2 · b�	0�

≥ b�	�� ∀	 ∈
� (27)

where (25) follows from the feasibility of �x∗� y∗�	̃�� for scenario 	̃ and (26) follows as b�	̃� = 6 · b�	0�
by definition. Inequality (27) follows from the fact that b�	0� is the point of symmetry of �b�
� and from
Lemma 2.3, b�	� ≤ 2b�	0� for all 	 ∈
. Note that we scale the solution �x∗� y∗�	0�� by a factor of �2/6�
instead of only 2/6 to preserve the feasibility of integer decision variables in the first stage. Now,

zRob�b�≤
⌈
2
6

⌉
· �cT x∗ +dT y∗�	̃��� (28)

Using an argument similar to the proof of Theorem 2.1, we can show that Ɛ
�y
∗�	�� is a feasible solution for

scenario 	̃ which implies that
dT y∗�	̃�≤ dT Ɛ
�y

∗�	��� (29)

because y∗�	̃� is an optimal solution for scenario 	̃. Now,

zStoch�b� = cT x∗ + Ɛ
�d
T y∗�	��

= cT x∗ +dT Ɛ
�y
∗�	��

≥ cT x∗ +dT y∗�	̃�� (30)

where (30) follows from (29) and the bound

zRob�b�≤
⌈
2
6

⌉
· zStoch�b�

follows from (28). �
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The bound of two on the stochasticity gap can be further improved if 0��b�
�. Let bl� bh ∈�m
+ be such that

for all j = 1� ! ! ! �m,
blj = min

b∈�b�
�
bj� bhj = max

b∈�b�
�
bj � (31)

If bl ≥ 7 · bh for some 0≤ 7≤ 1, we can improve the bound on the stochasticity gap in Theorem 2.2 as

b�	0�= bl + bh

2
≥ 7bh + bh

2
= �1+7� · b

h

2
�

Therefore, if we scale the optimal solution of �Stoch�b� for scenario 	0 by a factor �2/�1+ 7�� (instead of
scaling by a factor 2), we obtain a feasible solution for �Rob�b�, because⌈

2
1+7

⌉
· �Ax∗ +By∗�	0�� ≥ 2

1+7
· b�	0�

= 2
1+7

· b
l + bh

2

≥ 2
1+7

· b
h · �1+7�

2

= bh

≥ b�	�� ∀	 ∈
�

Combining with the result of Theorem 2.2, we have the following theorem.

Theorem 2.3. Consider the problems �Stoch�b� and �Rob�b�, where there are no integer decision variables
in the second stage, i.e., p2 = 0 and the uncertainty set �b�
� is symmetric. Let 	0 denote the scenario such
that b�	0� is the point of symmetry of �b�
� and suppose for some 6> 0, 6 ·b�	0� ∈�b�
� and the probability
measure 
 on the set of scenarios 
 satisfies condition (24). Let bl� bh ∈�m

+ be as defined in (31) and suppose
bl ≥ 7 · bh for some 7≥ 0. Then

zRob�b�≤
⌈

2
6�1+7�

⌉
· zStoch�b��

Note that the condition that bl ≥ 7bh is trivially satisfied for 7 = 0 because �b�
� ⊂ �m
+ and bl ≥ 0. For

7= 0, we get back the bound of Theorem 2.2. We would like to remark that our results in Theorems 2.1–2.3
hold even for the model without the nonnegativity restrictions on the objective coefficients and the decision
variables.
In Theorems 2.1–2.3, we prove that an optimal solution to the robust problem �Rob�b� is a good approximation

for the two-stage stochastic problem �Stoch�b�. We next show that an optimal solution to �Rob�b� can be
computed by solving a single mixed integer optimization problem whose size does not depend on the uncertainty
set or the number of worst-case scenarios. In particular, we prove the following theorem.

Theorem 2.4. Let bh ∈�m
+ be such that for each j = 1� ! ! ! �m,

bhj = max
b�	�∈�b�
�

bj�	��

Then the optimal solution to �Rob�b� can be obtained by solving the following mixed integer problem �:

z���=min cT x+dT y�

Ax+By ≥ bh�

x ∈�n1−p1+ ×�p1+ �

y ∈�n2+ �

Proof. Consider an optimal solution �x̂� ŷ� to �. Clearly, �x̂� ŷ� is a feasible solution to �Rob�b� because

Ax̂+Bŷ ≥ bh ≥ b�	�� ∀	 ∈
�

Therefore, zRob�b�≤ z���.
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Now, consider an optimal solution �x∗� y∗� to �Rob�b�. We show that it is a feasible solution to �. For the
sake of contradiction, suppose it is not feasible. Therefore, there exists j ∈ �1� ! ! ! �m� such that,

�Ax∗ +By∗�j < bhj �

Let
4j ∈ argmax�bj�	� � b�	� ∈�b�
���

Therefore,
Ax∗ +By∗ ≥ 4j ⇒ �Ax∗ +By∗�j ≥ 4

j
j = bhj �

because 4j is a possible realization of the uncertain right-hand side and 4
j
j = bhj (by definition), which is a

contradiction. Therefore, z���≤ zRob�b�. �

Note that the problem � has only m constraints and �n1+n2� decision variables and thus, the size of � does
not depend on the number of scenarios. Therefore, a good approximate solution to �Stoch�b� can be computed by
solving a single deterministic mixed integer optimization problem whose size does not depend on the uncertainty
set and even without the knowledge of the probability distribution, as long as it satisfies (9) or (24), for example.

2.2. A tight stochasticity gap example for symmetric uncertainty sets. Here, we present an instance of
�Rob�b� and �Stoch�b�, where the uncertainty set �b�
� is symmetric such that, zRob�b�= 2zStoch�b�. Consider
the following instance where n1 = 0� n2 = n�m = n�A = 0� c = 0�d = �1� ! ! ! �1��B = In (here In denotes a
n× n identity matrix). Let 
 denote the set of uncertain scenarios and the uncertainty set

�b�
�= �b ∈�n
+ � 0≤ bj ≤ 1� j = 1� ! ! ! � n��

Also, each bj� j = 1� ! ! ! � n takes a value uniformly at random between zero and one and independent of other
components and the probability measure 
 is defined according to this distribution. Therefore,

Ɛ
�b�	��= �Ɛ
�b1�	��� ! ! ! �Ɛ
�bn�	���=
(
1
2 � ! ! ! �

1
2

)
�

Note that �b�
� is a hypercube and thus, a symmetric set in the nonnegative orthant with b0 = �1/2� ! ! ! �1/2� as
the point of symmetry. Also, Ɛ
�b�	��= b0. Therefore, the uncertainty set �b�
�, and the probability measure

, satisfy the assumptions in Theorem 2.1.

Theorem 2.5. For �Rob�b� and �Stoch�b� defined above,

zRob�b�= 2 · zStoch�b��
Proof. Consider any feasible solution �y1� ! ! ! � yn� for �Rob�b�. For any �b1� ! ! ! � bn� ∈�b�
�, we require

that yj ≥ bj for all j = 1� ! ! ! � n. We know that �1� ! ! ! �1� ∈ �b�
�. Therefore, yj ≥ 1 for all j = 1� ! ! ! � n,
which implies that zRob�b� = n. Now, consider �Stoch�b� and consider the solution ŷ�	� = b�	�. Clearly, the
solution ŷ�	� for all 	 ∈
 is feasible. Therefore,

zStoch�b� ≤ Ɛ
�d
T ŷ�	��

=
n∑

j=1
Ɛ
�ŷj �	��

=
n∑

j=1
Ɛ
�bj�	�� (32)

=
n∑

j=1

1
2

(33)

= n

2
�

where (32) follows from the fact that y�	� = b�	� for all 	 ∈ 
. Also, from Theorem 2.1, we have that
zRob�b�≤ 2 · zStoch�b�. Therefore, zRob�b�= 2 · zStoch�b�. �
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2.3. A large stochasticity gap example for nonsymmetric sets. We show that if the uncertainty set is not
symmetric, then the stochasticity gap can be arbitrarily large. Consider the following instance of �Rob�b�, where
n1 = 0, n2 =m= n≥ 3, d= �0� ! ! ! �0�1� ∈�n

+.

min dT y�

Iny ≥ b� ∀b ∈�b�
��

y ≥ 0�

(34)

where In is the n× n identity matrix. The corresponding instance for �Stoch�b� is the following:

min Ɛ
�d
T y�b���

Iny�b�≥ b� ∀b ∈�b�
��

y ≥ 0�

(35)

where 
 denotes the set of scenarios and the uncertainty set

�b�
�=
{
b ∈ �0�1�n

∣∣∣∣
n∑

j=1
bj ≤ 1� b ≥ 0

}
� (36)

Also, 
 is the uniform probability measure on �b�
�, i.e., for any � ⊂
,


�� �= volume��b�	� �	 ∈� ��

volume��b�
��
�

Theorem 2.6. For �Stoch�b� and �Rob�b� defined above,

zRob�b�≥ �n+ 1� · zStoch�b��
We first show that the uncertainty set �b�
� is not symmetric.

Lemma 2.4. The uncertainty set �b�
� defined in (36) is not symmetric for n≥ 2.

Proof. For the sake of contradiction, suppose �b�
� is symmetric and let u0 denote the center of �b�
�.
Because 0= �u0 − u0� ∈�b�
�, then �u0 + u0�= 2u0 ∈�b�
�. Therefore,

n∑
i=1

2u0i ≤ 1 ⇒ u0j ≤ 1
2 � j = 1� ! ! ! � n�

Let ej denote the jth unit vector in �n
+ where only the jth coordinate is one and all others are zero. Now,

ej = u0 + �ej − u0� ∈�b�
� ⇒ xj = u0 − �ej − u0� ∈�b�
� ∀ j = 1� ! ! ! � n�

If there exists j ∈ �1� ! ! ! � n� such that u0j <
1
2 , then

x
j
j = u0j − �1− u0j �= 2u0j − 1< 0�

which is a contradiction. Therefore, u0j = 1
2 for all j = 1� ! ! ! � n. Now, 2u0 = �1� ! ! ! �1�, which is a contradiction

because 2u0 ∈�b�
�, but �1� ! ! ! �1���b�
�. Therefore, �b�
� is not symmetric. �

Proof of Theorem 2.6. Consider the robust problem �Rob�b�:

zRob�b�=min
y

dT y�

Iny ≥ b�	�� ∀	 ∈
�

y ≥ 0�

Because ej ∈ �b�
� for all j = 1� ! ! ! � n, for any feasible solution y ∈ �n
+, Iny ≥ ej for all j = 1� ! ! ! � n.

Therefore, yj ≥ 1 for all j = 1� ! ! ! � n, which implies

zRob�b�≥ 1�
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Now, consider �Stoch�b�:

zStoch�b�=min
y

Ɛ
�d
T y�	���

Iny�	�≥ b�	�� ∀	 ∈
�

y�	�≥ 0�

Consider the solution ŷ�	�= b�	� for all 	 ∈
. Clearly, the solution ŷ�	� is feasible, as Inŷ�	�= b�	� for
all 	 ∈
. Now,

zStoch�b� ≤ Ɛ
�d
T ŷ�	��

= Ɛ
�ŷn�	��

= Ɛ
�bn�	�� (37)

=

∫ 1

x1=0

∫ 1−x1

x2=0
· · ·

∫ 1−�x1+x2+···+xn−1�

xn=0
xn dxn dxn−1 · · ·dx1

volume��b�
��
(38)

=

∫ 1

x1=0

∫ 1−x1

x2=0
· · ·

∫ 1−�x1+x2+···+xn−1�

xn=0
xn dxn dxn−1 · · ·dx1∫ 1

x1=0

∫ 1−x1

x2=0
· · ·

∫ 1−�x1+x2+···+xn−1�

xn=0
dxndxn−1 · · ·dx1

(39)

= 1/�n+ 1�!
1/n!

= 1
n+ 1

�

where (37) follows because ŷ�	�= b�	� for all 	 ∈
, and the integrals in the numerator and the denominator
of (39) follow from standard computation. Therefore, zRob�b�≥ �n+ 1� · zStoch�b�. �

The example in Theorem 2.6 shows that if the uncertainty set is not symmetric, then the optimal cost of
�Rob�b� can be arbitrarily large as compared to the optimal expected cost of �Stoch�b�. In fact, this example also
shows that the optimal cost of �Adapt�b� can be arbitrarily large as compared to the optimal cost of �Stoch�b�.
Consider the adaptive problem �Adapt�b� for the instance in Theorem 2.6 and consider the scenario 	′, where
bn�	

′� = 1 and bj�	
′� = 0� j = 1� ! ! ! � n− 1. Let y∗�	� for all 	 ∈ 
 be an optimal solution for �Adapt�b�.

Therefore, for scenario 	′, Iny∗�	′�≥ b�	′�. Thus,

y∗n�	
′�≥ bn�	

′�= 1�

Therefore,
zAdapt�b�=max

	∈

dT y∗�	�≥ dT y∗�	′�≥ 1�

which implies that zAdapt�b� ≥ �n+ 1� · zStoch�b�. The large gap between the optimal values of �Stoch�b� and
�Adapt�b� indicates that allowing a fully adaptable solution is not the only reason for the large gap between
�Stoch�b� and �Rob�b�. Instead, the gap is large because the objective function is an expectation in �Stoch�b�
whereas it is the worst-case in both �Rob�b� and �Adapt�b�.

2.4. Stochasticity gap for positive uncertainty sets. In this section, we prove a bound on the stochasticity
gap when the uncertainty set is not necessarily symmetric. In view of the large stochasticity gap example for
a nonsymmetric uncertainty set, it is clear that we need additional restrictions on the uncertainty set for the
stochasticity gap to be bounded. We prove that the stochasticity gap is at most 2 if the uncertainty set is convex
and positive but not necessarily symmetric. Recall that a convex set P ⊂ �n

+ is positive if there is a convex
symmetric S ⊂�n

+ such that P ⊂ S and the point of symmetry of S belongs to P .

Theorem 2.7. Consider the robust and stochastic problems �Rob�b� and �Stoch�b�. Suppose the uncertainty
set, �b�
�, is convex and positive. Let �⊂�m

+ be a symmetric uncertainty set containing �b�
� such that the
point of symmetry b0 of � is contained in �b�
�. If Ɛ
�b�	��≥ b0, then

zRob�b�≤ 2 · zStoch�b��
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Proof. Let 	0 be the scenario such that b�	0� = b0. Consider an optimal solution x∗, y∗�	�, ∀	 ∈
 to
�Stoch�b�. Therefore,

Ax∗ +By∗�	�≥ b�	�� ∀	 ∈
�

Using an argument similar to the proof of Theorem 2.1, we can show that Ɛ
�y
∗�	�� is a feasible solution for

scenario 	0, which implies that
dT y∗�	0�≤ dT Ɛ
�y

∗�	��� (40)

because y∗�	0� is an optimal solution for scenario 	0. Also, we can show that the static solution �2x∗�2y∗�	0��
is a feasible solution for �Rob�b�:

A�2x∗�+B�2y∗�	0��≥ 2b�	0�≥ b�	�� ∀	 ∈
�

Hence,

zRob�b� ≤ 2 · �cT x∗ +dT y∗�	0��

≤ 2 · �cT x∗ +dT Ɛ
�y
∗�	���

= 2 · zStoch�b�� (41)

where (41) follows from (40). �

3. Stochasticity gap under cost and right-hand side uncertainty. In this section, we show that the stochas-
ticity gap can be arbitrarily large if we consider both cost and right-hand side uncertainty even if the uncertainty
set and the probability distribution are both symmetric and there are no integer decision variables. In fact, we
construct an example with no right-hand side uncertainty, no integer decision variables, and a single constraint
such that the stochasticity gap is arbitrarily large.

Theorem 3.1. Consider the following instances of �Stoch�b�d� and �Rob�b�d�, where n1 = 0, n2 = n, p2 = 0,
m= 1, and c= 0, A= 0 and B= �1�1� ! ! ! �1� ∈�1×n. Let the uncertainty set ��b�d��
�⊂�n+1

+ be given by

��b�d��
�= {
�b�	��d�	�� � b�	�= 1�0≤ dj�	�≤ 1� ∀ j = 1� ! ! ! � n� ∀	 ∈


}
�

and each dj is distributed uniformly at random between 0 and 1 and independent of other coefficients. Then,

zRob�b�d�≥ �n+ 1� · zStoch�b�d��
Proof. Note that the uncertainty set is a hypercube and thus, symmetric. Let 	0 denote the scenario cor-

responding to the point of symmetry of the uncertainty set. Therefore, d�	0�= �1/2� ! ! ! �1/2� and b�	0�= 1.
Also, Ɛ
�d�	��= �1/2� ! ! ! �1/2�= d�	0� and thus, the probability distribution also satisfies (9). Consider an
optimal solution ŷ to �Rob�b�d�. Therefore, �ŷ1 + · · ·+ ŷn�≥ 1, and

zRob�b�d�=max
	∈


�d�	��T ŷ ≥ �1� ! ! ! �1�T ŷ ≥ 1�

because there is a scenario 	 such that dj�	� = 1 for all j = 1� ! ! ! � n. On the other hand, we show that
zStoch�b�d� ≤ 1/�n + 1�. Consider the following solution ỹ�	� for all 	 ∈ 
 for �Stoch�b�d�, where for all
scenarios 	 ∈
 and j = 1� ! ! ! � n,

ỹj �	�=
{
1� if dj�	�=min�d1�	�� ! ! ! � dn�	���

0� otherwise.

It is easy to observe that ỹ�	� for all 	 ∈
 is a feasible solution for �Stoch�b�d�. Therefore,

zStoch�b�d� ≤ Ɛ
��d�	��
T ỹ�	��

= Ɛ
�min�d1�	�� ! ! ! � dn�	��� (42)

= 1
n+ 1

� (43)

where (42) follows from the construction of ỹ�	�, which implies �d�	��T ỹ�	�=min�d1�	�� ! ! ! � dn�	�� for
all 	 ∈
. Inequality (43) follows from the computation of expected value of the minimum of n independent
random variables each uniformly random between 0 and 1. Therefore, zRob�b�d�≥ �n+ 1� · zStoch�b�d�. �
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4. Adaptability gap under right-hand side uncertainty. In this section, we consider the robust and adapt-
able problems �Rob�b� (cf. (2)) and �Adapt�b� (cf. (3)) and show that the worst-case cost of the optimal solution of
�Rob�b� is at most two times the worst-case cost of an optimal adaptable solution of �Adapt�b� if the uncertainty
set is positive. Because positive sets are a generalization of symmetric sets, the result follows for symmetric sets
as well. We also show that the bound is tight for even symmetric uncertainty sets and the adaptability gap can
be arbitrarily large if the uncertainty set is not symmetric as in the case of the stochasticity gap under right-hand
side uncertainty.

4.1. Adaptability gap for positive uncertainty sets. We show that if the uncertainty set �b�
� is symmet-
ric, the adaptability gap is at most two. The bound on the adaptability gap holds even when there are integer
decision variables in the second stage unlike the case of the stochasticity gap where integer decision variables
are allowed only in the first stage. However, the adaptability gap bound does not hold if there are binary decision
variables in the model.
Let us first consider the simpler case where there are no integer decision variables in the second stage. The

bound on the adaptability gap in this case follows directly from the bound on the stochasticity gap, as for any
probability measure 
:

zStoch�b�≤ zAdapt�b�≤ zRob�b��

Now, consider a measure 
 that satisfies condition (9) in Theorem 2.1, i.e., Ɛ
�b�	��≥ b�	0�, where b�	0� is
the point of symmetry of �b�
�. Clearly, Ɛ
′ �b�	��= b�	0�. From Theorem 2.1,

zRob�b�≤ 2 · zStoch�b��
which implies that

zStoch�b�≤ zAdapt�b�≤ zRob�b�≤ 2 · zStoch�b��
We prove the bound of 2 on the adaptability gap for the model that allows integer decision variables in the

second stage. In particular, we have the following theorem.

Theorem 4.1. Let zRob�b� denote the optimal worst-case cost of �Rob�b� and zAdapt�b� denote the optimal
worst-case cost of �Adapt�b�, where the uncertainty set �b�
�⊂�m

+ is positive. Then,

zRob�b�≤ 2 · zAdapt�b��
Proof. Because �b�
� is positive, there exists a convex symmetric set S ⊂ �m

+ such that �b�
�⊂ S and
the point of symmetry of S (say u0) belongs to �b�
�. Let 	0 denote the scenario such that b�	0�= u0. Let
x∗� y∗�	��∀	 ∈
 be an optimal solution for �Adapt�b�. Then,

zAdapt�b� = cT x∗ +max
	∈


dT y∗�	�

≥ cT x∗ +dT y∗�	0�� (44)

Also,

A�2x∗�+B�2y∗�	0�� = 2�Ax∗ +By∗�	0��

≥ 2b�	0� (45)

≥ b�	�� ∀	 ∈
� (46)

where (45) follows from the feasibility of the solution �x∗� y∗�	0�� for scenario 	0. Inequality (46) follows from
the fact that b�	0� is the point of symmetry of �b�
� and from Lemma 2.3, we have that b�	�≤ 2b�	0� for
all 	 ∈
. Therefore, �2x∗�2y∗�	0�� is a feasible solution for �Rob�b�, and

zRob�b� ≤ cT �2x∗�+dT �2y∗�	0��

= 2 · �cT x∗ +dT y∗�	0��

≤ 2 · zAdapt�b�� (47)

where (47) follows from (44). �
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In fact, we prove a stronger bound on the adaptability gap similar to the bound on the stochasticity gap in
Theorem 2.3. We have the following theorem.

Theorem 4.2. Consider the problems �Rob�b� and �Adapt�b�, where the uncertainty set �b�
� ⊂ �m
+ is

positive. Let S ⊂�m
+ be a symmetric set that contains ��b�d��
� such that the point of symmetry u0 ∈��b�d��
�.

Also, let 	0 ∈ 
 be the scenario such that �b�	0��d�	0�� = u0. Let bl� bh ∈ �m
+ be such that, for all j =

1� ! ! ! �m,
blj =min�bj � �b�d� ∈ S�� bhj =max�bj � �b�d� ∈ S��

Suppose bl ≥ 7 · bh for some 0≤ 7≤ 1, then

zRob�b�≤
⌈

2
1+7

⌉
· zAdapt�b��

4.2. A tight adaptability gap example for symmetric uncertainty sets. We show that the bound of 2 on
the adaptability gap under symmetric right-hand side uncertainty is also tight, like the bound on the stochasticity
gap.
Consider the following instance where n1 = 0, n2 = 2, m= 2, A= 0, c = 0, d = �1�1�, and B = I2 (here I2

denotes a 2× 2 identity matrix). Let 
 denote the set of uncertain scenarios and the uncertainty set

�b�
�= �b ∈�2
+ � b1 + b2 = 1��

Let us first show that �b�
� is symmetric.

Lemma 4.1. The uncertainty set �b�
� is symmetric with center u0 = � 12 �
1
2 �.

Proof. Consider any z ∈�2 such that �u0 + z� ∈��
�. Therefore,

(
1
2 + z1

)+ (
1
2 + z2

)= 1 ⇒ z1 + z2 = 0�

Also,
0≤ (

1
2 + zj

)≤ 1 ⇒ − 1
2 ≤ zj ≤ 1

2 � j = 1�2�

Therefore,
0≤ 1

2 − zj ≤ 1� j = 1�2�

and (
1
2 − z1

)+ (
1
2 − z2

)= 1− �z1 + z2�= 1 ⇒ �u0 − z� ∈��
��

because z1 + z2 = 0. �

Theorem 4.3. For the robust and adaptable problems �Rob�b� and �Adapt�b� in the above instance,

zRob�b�= 2 · zAdapt�b��

Proof. Consider any feasible solution �y1� y2� for �Rob�b�. For any �b1� b2� ∈ �2
+ such that b1 + b2 = 1,

we require that y1 ≥ b1 and y2 ≥ b2. Therefore, y1 ≥ 1, y2 ≥ 1 and zRob�b� ≥ 2. Now, consider the adaptable
problem �Adapt�b�d� and consider the solution ŷ�	�= b�	�. Clearly, the solution ŷ�	� for all 	 ∈
 is feasible.
Therefore,

zAdapt�b� ≤ max
	∈


dT y�	�

= max
	∈


y1�	�+ y2�	�

= max
	∈


b1�	�+ b2�	�

≤ 1�

Also, from Theorem 4.1, we have that zRob�b�≤ 2 · zAdapt�b�. Therefore, zRob�b�= 2 · zAdapt�b�. �
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4.3. A large adaptability gap example for nonsymmetric uncertainty sets. In this section, we construct
an example of a nonsymmetric uncertainty set such that the worst-case cost of an optimal robust solution is

�m� times the worst-case cost of an optimal adaptable solution. Therefore, the adaptability gap is 
�m� in
this case.

Theorem 4.4. Consider an instance of problem �Rob�b� and �Adapt�b�, where, n1 = 0, n2 = n≥ 3, p2 = 0,
A= 0, c = 0�d = �1�1� ! ! ! �1� (an n dimensional vector of all ones) and B = In (In is n× n identity matrix).
Let 
 denote the set of scenarios and the uncertainty set

�b�
�=
{
b

∣∣∣∣
m∑
j=1

bj ≤ 1� b ≥ 0
}
� (48)

Then,
zRob�b�≥ n · zAdapt�b��

Proof. From Lemma 2.4, we know that the uncertainty set �b�
� is not symmetric. Consider the robust
problem �Rob�b�

zRob�b�=min
y

dT y�

Iny ≥ b�	�� ∀	 ∈
�

y ≥ 0�

For any feasible solution y ∈�m
+, Iny ≥ ej for all j = 1� ! ! ! �m, where ej is the unit vector corresponding to the

jth column of In (ej ∈��
�). Therefore, yj ≥ 1 for all j = 1� ! ! ! �m which implies,

zRob�b�≥ n�

Now, consider �Adapt�b�

zAdapt�b�=minmax
	∈


dT y�	��

Iny�	�≥ b�	�� ∀	 ∈
�

y�	�≥ 0�

Consider any scenario 	 ∈
 and let b�	� be the realizations of b in scenario 	. Then,

n∑
j=1

bj�	�≤ 1�

Consider the following feasible solution ŷ�	�= b�	� for all 	 ∈
. Now,

zAdapt�b�≤max
	∈


dT ŷ�	�

=max
	∈


n∑
j=1

bj�	�

≤ 1�

Therefore, zRob�b�≥ n · zAdapt�b�. �

5. Adaptability gap under right-hand side and cost uncertainty. In this section, we bound the adapt-
ability gap for a more general model of uncertainty where both the right-hand side of the constraints and the
objective coefficients are uncertain and the second stage decision variables are allowed to be integers. Unlike
the stochasticity gap under cost and right-hand side uncertainty, the adaptability gap is bounded and is at most
four when the uncertainty set is positive. Because positive sets are a generalization of symmetric sets, the result
follows for symmetric sets as well. Furthermore, we show that the adaptability gap is one for the special case
of hypercube uncertainty sets in an even more general model of uncertainty that allows constraint coefficients
to be uncertain. This result is particularly surprising because the bound of two on the stochasticity gap is tight
for hypercube right-hand side uncertainty (cf. §2.2).
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5.1. Positive uncertainty sets. We consider problems �Adapt�b�d� (cf. (6)) and �Rob�b�d� (cf. (5)), and
show that the adaptability gap is at most four if the uncertainty set is positive. In particular, we prove the
following theorem.

Theorem 5.1. Consider the problems �Rob�b�d� and �Adapt�b�d�, where the uncertainty set ��b�d��
� ⊂
�m+n2+ is positive. Then,

zRob�b�d�≤ 4 · zAdapt�b�d��
Proof. Because ��b�d��
� is positive, there exists a convex symmetric set S ⊂�m+n2+ such that ��b�d��
�⊂ S

and the point of symmetry of S (say u0) belongs to ��b�d��
�. Let 	0 be the scenario corresponding to u0 =
�b�	0��d�	0��. Consider an optimal solution x∗� y∗�	��∀	 ∈ 
 to �Adapt�b�d�. We show that the solution
�2x∗�2y∗�	0�� is a feasible solution for the robust problem �Rob�b�d� because

A�2x∗�+B�2y∗�	0��≥ 2b�	0�≥ b�	�� ∀	 ∈
� (49)

where inequality (49) follows from the fact that �b�	0��d�	0�� is the center of the symmetric set S that contains
��b�d��
�. Therefore, b�	�≤ 2b�	0� and d�	�≤ 2d�	0� for all 	 ∈
 from Lemma 2.3. Now,

zRob�b�d� ≤ cT �2x∗�+max
	∈


d�	�T �2y∗�	0��

≤ 2 · cT x∗ + �2 ·d�	0��T �2y∗�	0�� (50)

≤ 4 · �cT x∗ +d�	0�T y∗�	0��

≤ 4 · zAdapt�b�d�� (51)

where (50) follows from the fact that d�	�≤ 2d�	0� for all 	 ∈
 because d�	0� is the point of symmetry of
S ⊃��b�d��
�, and finally (55) follows because cT x∗ +d�	0�T y∗�	0�≤ zAdapt�b�d�. �

Similar to the bound on the adaptability gap under right-hand side uncertainty in Theorem 4.2, we obtain a
stronger multiplicative bound on the adaptability gap under cost and right-hand side uncertainty. In particular,
we have the following theorem.

Theorem 5.2. Consider the problems �Rob�b�d� and �Adapt�b�d� where the uncertainty set ��b�d��
� is
positive. Let S ⊂�m+n2+ be a symmetric set that contains ��b�d��
� such that the point of symmetry u0 ∈��b�d��
�.
Also, let 	0 ∈
 be the scenario such that �b�	0�, d�	0��= u0. Let �bl� dl�, �bh�dh� ∈�m+n2+ be such that for
all j = 1� ! ! ! �m,

blj =min�bj � �b�d� ∈ S�� bhj =max�bj � �b�d� ∈ S��

and for all j = 1� ! ! ! � n2,

dl
j =min�dj � �b�d� ∈ S�� dh

j =max�dj � �b�d� ∈ S��

Suppose bl ≥ 7 · bh and dl ≥ 7 ·dh for some 0≤ 7≤ 1. Then

zRob�b�d�≤
(

2
1+7

)
·
⌈

2
1+7

⌉
· zAdapt�b�d��

Proof. From Lemma 2.3, we know that

b�	0�= bl + bh

2
� d�	0�= dl +dh

2
�

Because bl ≥ 7 · bh and dl ≥ 7 · bh, we have that

bh ≤ 2
1+7

· b�	0�� dh ≤ 2
1+7

·d�	0�� (52)

Let x∗, y∗�	�, ∀	 ∈
 be an optimal solution for �Adapt�b�d�. Then, we show that the solution⌈
2

1+7

⌉
· �x∗� y∗�	0���
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is a feasible solution for �Rob�b�d�.⌈
2

1+7

⌉
· �Ax∗ +By∗�	0�� ≥ 2

1+7
· b�	0�

≥ bh

≥ b�	�� ∀	 ∈
� (53)

where (53) follows from (52). Therefore,

zRob�b�d� ≤
⌈

2
1+7

⌉
·
(
cT x∗ +max

	∈

d�	�T y∗�	0�

)

≤
⌈

2
1+7

⌉
· �cT x∗ + �dh�T y∗�	0��

≤
⌈

2
1+7

⌉
·
(
cT x∗ +

(
2

1+7

)
·d�	0�T y∗�	0�

)
(54)

≤
(

2
1+7

)
·
⌈

2
1+7

⌉
· �cT x∗ +d�	0�T y∗�	0��

≤
(

2
1+7

)
·
⌈

2
1+7

⌉
· zAdapt�b�d�� (55)

where (54) follows from (52) and (55) follows from the fact that 	0 ∈
 and the optimality of x∗� y∗�	� for
�Adapt�b�d�. �

5.2. Special case of hypercube uncertainty sets. In this section, we consider the case where the uncertainty
set is a hypercube and show that the worst-case cost of the optimal solution of �Adapt�b�d� is equal to the
worst-case cost of the optimal solution of �Adapt�b�d�. In fact, we prove the result for a more general model
of uncertainty, one where the coefficients in the constraint matrix are also uncertain. We consider the following
adaptive two-stage mixed integer problem, �Adapt�A�B�b�d�:

zAdapt�A�B�b�d�=min cT x+max
	∈


d�	�T y�	��

A�	�x+B�	�y�	�≥ b�	�� ∀	 ∈
�

x ∈�n1−p1+ ×�p1+ �

y�	� ∈�n2−p2+ ×�n2+ � ∀	 ∈
�

(56)

where 
 is the set of uncertain scenarios and 	 ∈ 
 refers to a particular scenario. Let � =
��A�	��B�	�� b�	��d�	�� � 	 ∈ 
� denote the hypercube uncertainty set for scenarios in 
, where A�	� ∈
�m×n1�B�	� ∈�m×n2� b�	� ∈�m, and d�	� ∈�n2+ are realizations of the uncertain parameters in scenario 	.
The robust counterpart �Rob�A�B�b�d� is formulated as follows:

zRob�A�B�b�d�=min cT x+max
	∈


d�	�T y�

A�	�x+B�	�y ≥ b�	�� ∀	 ∈
�

x ∈�n1−p1+ ×�p1+ �

y ∈�n2−p2+ ×�n2+ �

(57)

Theorem 5.3. Let � be a hypercube, i.e.,

�= �l1� u1�× �l2� u2�× · · ·× �lN � uN ��

for some li ≤ ui for all i= 1� ! ! ! �N , where N =mn1 +mn2 +m+ n2, then

zRob�A�B�b�d�= zAdapt�A�B�b�d��
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Proof. Consider an optimal solution �x∗� y∗� of the problem �Rob�A�B�b�d�. Therefore,

A�	�x∗ +B�	�y∗ ≥ b�	�� ∀	 ∈
�

Therefore, the solution x= x∗� y�	�= y∗�∀	 is a feasible solution for �Adapt�A�B�b�d� which implies,

zAdapt�A�B�b�d�≤ cT x∗ +max
	∈


d�	�T y∗�

Now consider an optimal solution x̂ and ŷ�	��∀	 ∈
 for �Adapt�A�B�b�d�. Consider the following realization
of the uncertain parameters.

Āij = min
	∈


Aij�	�� ∀ i= 1� ! ! ! �m� j = 1� ! ! ! � n1� (58)

B̄ij = min
	∈


Bij�	�� ∀ i= 1� ! ! ! �m� j = 1� ! ! ! � n2� (59)

b̄i = max
	∈


bi�	�� ∀ i= 1� ! ! ! �m� (60)

d̄j = max
	∈


dj�	�� ∀ j = 1� ! ! ! � n2�

Because the uncertainty set is a hypercube, the vec�Ā� B̄� b̄� d̄� is a valid scenario. Let us refer to this scenario
as 	̄. Clearly,

zAdapt�A�B�b�d�= cT x̂+max
	∈


d�	�T ŷ�	�≥ cT x̂+d�	̄�T ŷ�	̄��

We claim that �x̂� ŷ�	̄�� is a feasible solution for �Rob�A�B�b�d�. Consider any 	 ∈
. Now,

A�	�x̂+B�	�ŷ�	̄� ≥ Āx̂+ B̄ŷ�	̄� (61)

≥ b�	̄� (62)

≥ b�	�� (63)

where (61) follows from (58) and (59) and the fact that x̂� ŷ�	̄�≥ 0. Inequality (62) follows from the feasibility
of �x̂� ŷ�	̄�� for scenario 	̄ and (60). Inequality (63) follows from the fact that b�	̄� ≥ b�	� for any 	 ∈
.
Therefore,

zRob�A�B�b�d� ≤ cT x̂+max
	∈


d�	�T ŷ�	̄�

≤ cT x̂+d�	̄�T ŷ�	̄�

≤ zAdapt�A�B�b�d�� (64)

where inequality (64) follows from the fact that d�	̄�≥ d�	� for all 	 ∈
 and ŷ�	̄�≥ 0. �

Therefore, we obtain the following corollary.

Corollary 5.1. Let zRob�b�d� be an optimal solution for �Rob�b�d� and zAdapt�b�d� be an optimal solution
for �Adapt�b�d�, where the uncertainty set, ��b�d��
�, is a hypercube. Then,

zRob�b�d�= zAdapt�b�d��

6. Conclusions. In this paper, we study the effectiveness of a static-robust solution in approximating two-
stage stochastic and adaptive optimization problems and present several surprising positive results under mild
restrictions on the model and the uncertainty set. We show that, under fairly general assumptions for the uncer-
tainty set, and the probability measure (namely that both are symmetric), a static-robust solution is a good
approximation for the two-stage stochastic optimization problem when the right-hand side of the constraints is
uncertain and a good approximation for the two-stage adaptive optimization problem when both the right-hand
side and the costs are uncertain. In other words, both the stochasticity gap (when only the right-hand side is
uncertain) and the adaptability gap (when both the right-hand side and the costs are uncertain) are bounded. We
also show that our bounds on the stochasticity and the adaptability gaps are tight for symmetric uncertainty sets.
The assumption of symmetry on the uncertainty set is not very restrictive and is satisfied by most commonly

used uncertainty sets such as hypercubes, ellipsoids and norm balls. Furthermore, we show that if the assumption
of symmetry on the uncertainty set is relaxed, both the stochasticity gap and the adaptability gap can be arbitrarily
large. We also extend the bounds for positive uncertainty sets that are not necessarily symmetric. Therefore,
the results in this paper show that the robust optimization approach is more powerful than believed previously
and provides a tractable and good approximation for both the two-stage stochastic and the two-stage adaptive
optimization problem under fairly general assumptions.
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